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ABSTRACT  

 

 
Our laboratory has demonstrated an important role for acid-sensing ion 

channel 1 (ASIC1) in pulmonary hypertension through augmented Ca2+ influx in 

pulmonary arterial smooth muscle cells (PASMC) following chronic hypoxia (CH). 

However, this enhanced calcium (Ca2+) influx is not dependent on an increase in 

ASIC1 protein expression. This suggests other regulatory mechanisms 

influencing ASIC1 activity are altered following CH. ASIC1 is a redox sensitive 

ion channel and recent studies from our laboratory have shown that the oxidant 

hydrogen peroxide (H2O2) inhibits ASIC1-dependent Ca2+ influx in PASMC. 

Reactive oxygen species are known to be altered in pulmonary hypertension, 

however the direction of these changes remains largely controversial. We 

hypothesized that H2O2 levels are decreased following CH due to diminished 
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production and enhanced degradation. To test this hypothesis we assessed H2O2 

levels by Amplex Red fluorescence and found a decrease in H2O2 in pulmonary 

arteries from CH rats (4 wks @ 380 Torr) compared to control. To determine the 

effect of CH on H2O2 production, we examined the expression and activity of 

superoxide dismutase (SOD) 1, 2, and 3. The expression of SOD1 and SOD3 

was decreased; and total and Cu/ZnSOD (SOD1 and SOD3) activities were 

reduced in pulmonary arteries from CH rats compared to those of controls. To 

determine the effect of CH on H2O2 decomposition, we examined the rate of 

catalysis of H2O2 and the expression and activity of the enzymes responsible for 

the catalysis of H2O2: catalase and glutathione peroxidase. We found the rate of 

H2O2 degradation was greater in pulmonary arteries from CH rats compared to 

control. While there was no difference in catalase expression or activity between 

groups, glutathione peroxidase expression and activity was augmented following 

CH. Together these data suggest the decrease in pulmonary arterial H2O2 levels 

in CH-induced pulmonary hypertension is a result of 1) decreased production due 

to diminished SOD1 and SOD3 expression and activity; and 2) increased 

catalysis via glutathione peroxidase. The decreased H2O2 levels correlate with 

enhanced ASIC1-dependent Ca2+ influx in PASMC following CH. Further studies 

are needed to determine the mechanism by which H2O2 regulates ASIC1 Ca2+ 

influx. 
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Chapter 1 – Introduction 

 

Pulmonary Hypertension 

Pulmonary hypertension (PH) is defined by mean pulmonary arterial 

pressure greater than 25 mmHg (162). This disease has multiple etiologies that 

allow for various classifications as defined by the World Health Organization. 

Group III includes PH caused by chronic lung diseases, such as chronic 

obstructive pulmonary disease (COPD), and/or hypoxia (162). Chronic lower 

respiratory diseases, including COPD, are the third leading cause of death in the 

United States as of 2011, with an increase in the death rate from the previous 

year (71). The mainstream treatments for PH include prostacyclin analogs, 

endothelin receptor antagonists, and phosphodiesterase type 5 inhibitors (39). 

However, these treatments are ineffective in Group III PH and in some cases 

worsen the disease (39, 96). Therefore, treatment is limited for patients for Group 

III PH. 

 Chronic hypoxia (CH)-induced pulmonary hypertension is associated with 

structural and functional changes in the pulmonary vasculature including 

vasoconstriction, vascular remodeling, and polycythemia (Figure 1)(41). The 

initial physiological response to alveolar hypoxia occurs within minutes initiating 

vasoconstriction which diverts pulmonary blood to areas of higher oxygen (171). 

If hypoxia is sustained, hypoxic pulmonary vasoconstriction (HPV) will persist 

though at a reduced level (171). In addition to HPV, several other forms of 

vasoconstriction occur in CH-induced pulmonary hypertension including 

depolarization-induced (16, 112, 120), agonist-induced (8), and pressure-induced 
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vasoconstriction (17) as well as Rho kinase-induced calcium (Ca2+) sensitization 

(81).  In both acute and sustained hypoxia, an increase in pulmonary artery 

smooth muscle cell (PASMC) Ca2+ occurs. Over time, the increase in Ca2+ 

facilitates vascular remodeling by stimulating cell proliferation in the medial layer. 

The increased thickness of the medial layer, in addition to vasoconstriction 

already present, reduces the pulmonary artery diameter and increases resistance 

(100).  

Hypoxia also mediates the stabilization of hypoxia inducible factor-1α 

(HIF-1α) which induces erythropoiesis and causes polycythemia (63, 161).  

Polycythemia increases blood viscosity and in addition to the previously 

mentioned reduction in arterial diameter, increases resistance (Poiseuille’s law, R 

= 8ηl / πr4 )(R = resistance; η = blood viscosity; l = vessel length; r = vessel 

radius) and therefore increases in pulmonary arterial pressure (14, 100). In an 

effort to compensate, the right ventricle undergoes hypertrophy as it works 

against the increased afterload (12). This increase in right ventricle size is used 

as an index of PH. For rats exposed to 4 weeks of CH, there is a significant 

increase in Fulton’s index (right ventricular weight / left ventricular weight plus 

septum) as well as hematocrit levels (Figure 2a,b).  
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Figure 1: Model of chronic hypoxia (CH)-induced pulmonary hypertension. Structural and 
functional changes that occur in a model of CH-induced pulmonary hypertension (380 
mmHg, 4 weeks). CH induces changes in vasoconstriction, vascular remodeling, and 
polycythemia. These lead to an increase in vascular resistance and the development of 
pulmonary hypertension and right ventricular hypertrophy.  
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Figure 2: Right ventricular hypertrophy and polycythemia present after 4 weeks chronic 
hypoxia (CH). A) Fulton’s index of right ventricle (RV) to left ventricle plus septum weight 
(LV+S) and B) hematocrit (in %) in rats exposed to control or CH conditions. Values are 
means ± SE by t-test; n = 6/group; *p<0.05 vs. control. 
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Hypoxic Pulmonary Vasoconstriction 

 As mentioned previously HPV matches ventilation and perfusion as a 

result of vasoconstriction due to acute (Phase 1) and sustained hypoxia (Phase 

2)(171). The increase in pulmonary artery constriction to hypoxia is well 

characterized, but the underlying mechanisms behind HPV remain unresolved, 

although increases in PASMC Ca2+ are implicated in both phases as well as in 

chronic hypoxia (100).  

Identifying the oxygen sensor is one source of contention. Two underlying 

assumptions guide the selection of the oxygen sensor. First, this sensor should 

be able to interact with oxygen within a hypoxic setting, and second it must be 

able to signal within the PASMC (155). The mitochondrion is one oxygen sensor 

that has been implicated in both acute and sustained HPV (155, 171). NADPH-

oxidase is a second oxygen sensor and has mainly been implicated in the first 

phase of HPV due to acute hypoxia (171). 

 

Chronic Hypoxia and Increased Calcium  

 Increases in vascular smooth muscle (VSM) intracellular Ca2+ accompany 

the large scale structural and functional changes in CH-induced pulmonary 

hypertension such as vasoconstriction and vascular remodeling (152, 170). 

There are multiple modes of entry for Ca2+ into PASMC including L-type voltage 

gated calcium channels (VGCC), store operated channels (SOC), and receptor 

operated channels (ROC) (14)(Figure 3) and each of these in turn have their own 

unique regulatory pathways. L-type VGCCs are activated under depolarizing 
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conditions (14) and also by phosphorylation (95), but do not appear to contribute 

a major role to the increased Ca2+ observed following CH (93, 152). ROCs 

mediate Ca2+ influx upon activation by the second messenger diacylglycerol 

which is initiated upon G-protein coupled receptor activation (65). ROCs and 

SOCs include non-selective cation channels (92, 101, 125). The transient 

receptor potential (TRP) channel family of proteins has been implicated in 

receptor operated calcium entry (ROCE). Members of the canonical family of 

TRP, TRPC channels include TRPC3, 6, and 7 and have been implicated in 

ROCE (65). Following CH, ROCE is increased in rat PASMC (93), though our 

laboratory has shown a decrease in pulmonary arteries (79, 154).  

 SOCs mediate the influx of Ca2+ in response to store depletion of the 

sarcoplasmic reticulum (SR) in smooth muscle cells and endoplasmic reticulum 

(ER) in other cell types in a process called store operated calcium entry (SOCE). 

Upon G-protein coupled receptor activation, the second messenger inositol 

trisphosphate binds its receptor on the SR causing release of Ca2+. Stromal 

interaction molecule 1 (STIM1), a transmembrane protein found in the SR that 

binds Ca2+, detects decreased Ca2+ levels and clusters near SOCs. The STIM1 

clusters enable the protein Orai1 to colocalize with STIM1and facilitate SOCE 

(42, 70, 139, 158) in which Ca2+ enters through SOCs to refill the SR stores (14). 

Several ion channels have been implicated in SOCE including TRPC1, 4, 5 and 6 

(124, 141, 169, 170), as well as Orai1/2 (46, 104, 107, 165, 186).  

Following CH, there is an increase in SOCE in rat PASMC (93) and SOCE 

contributes to the known increase in basal Ca2+ following CH (170). In addition, 
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CH has been linked to increased STIM1 (70) and TRPC1 and 6 expression (93, 

169), and following acute hypoxia STIM1 associates with TRPC1 and Orai1 in 

PASMC (115).  In cells from patients with PH, there is higher expression of 

STIM2 and Orai2, and STIM2 contributes to enhanced SOCE (157).  

With the use of siRNA targeting TRPC1 and 6 (93), STIM1, and Orai1 

(114-116), Ca2+ influx is reduced, but not abolished. Experiments employing 

TRPC1 knockout mice reveal conflicting data, with some reports revealing a 

significant contribution of TRPC1 to SOCE (149) and others no contribution (38) 

depending on tissue type. In addition, some studies examining TRPCs in regard 

to SOCE utilize non-selective cation channel inhibitors (93, 170). Therefore the 

identity and characteristics surrounding SOCs and associated SOCE 

mechanisms remain in question. Additional channels exist outside of TRPC 

family members that are able to conduct Ca2+ and they include acid-sensing ion 

channels: homomeric 1a, homomeric 1b, and heteromeric 1a + 2b depending on 

the animal species (167, 184). 
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Figure 3: Calcium influx pathways in a vascular smooth muscle cell. L-type voltage gated 
calcium channels (VGCC) allow for the influx of calcium classically through depolarization; 
receptor operated channels (ROC) activate upon the binding of diacylglycerol (DAG) via G-
protein coupled receptor activation; store operated channels (SOC) activate in response to 
depletion of calcium in the sarcoplasmic reticulum (SR).  
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Acid-Sensing Ion Channel 1 

Acid-sensing ion channel 1 (ASIC1), part of the degenerin/epithelial Na+ 

(DEG/ENaC) channel family, is activated upon a drop in extracellular pH to 

conduct Ca2+ and Na+ (167). Along with other members of the DEG/ENaC family, 

ASICs have a large extracellular cysteine rich region (9) as well as C-terminal 

cysteines (185).  Although they are primarily present in the nervous system, 

ASICs have also been observed in VSM (56, 57, 80, 118) and contribute to VSM 

migration (56, 57) and vasoconstriction following CH (79, 118). 

Previous work from our laboratory has shown that ASIC1 is expressed in 

the pulmonary vasculature (80, 118) and that it conducts Ca2+ (80). In addition, 

our laboratory found that ASIC1 mediates SOCE in control PASMC (80). 

Following CH, ASIC1 contributes to augmented SOCE in pulmonary arteries and 

PASMC (79, 118). ASIC1 also contributes to agonist-induced vasoconstriction 

following CH (79, 118) and HPV (118). Through the use of ASIC1 knockout mice, 

ASIC1 directly contributes to the development of CH-induced pulmonary 

hypertension by measuring indices such as arterial remodeling, polycythemia, 

Fulton’s index of right heart hypertrophy, and right ventricular systolic pressure 

(118).  

Interestingly, our laboratory found ASIC1 to be involved in augmented 

SOCE following CH in rats and mice (79, 118). We assessed protein expression 

and found increased ASIC1 in pulmonary arteries from rats exposed to CH but 

not mice exposed to CH, with no changes in mRNA (79, 118).  This discrepancy 
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in protein expression suggests other regulatory mechanisms contribute to the 

increase in SOCE observed independent of additional ASIC1 protein. 

Other groups have shown that ASIC1 can be regulated by redox state, 

with oxidizing agents inhibiting and reducing agents enhancing current through 

the channel (32); as well as reducing agents slowing desensitization of the 

channel, allowing it to remain open longer (2, 31). In addition, hydrogen peroxide 

(H2O2), a known oxidizing agent, decreases current and plasma membrane 

localization of ASIC1 (185). The exact mechanism of this regulation is not known, 

but strong speculation revolves around thiol modification affecting channel 

kinetics and/or trafficking (31, 185). 

 

Chronic Hypoxia and Associated Changes 

HPV is known to contribute to the pathogenesis of CH-induced pulmonary 

hypertension in part, but not completely as studies have shown exposure of CH-

exposed rats or humans with high altitude pulmonary hypertension to normoxia 

reduces but does not normalize pulmonary artery pressure (89, 91, 135, 161).  

Therefore other mechanisms contribute to CH-induced pulmonary hypertension. 

Numerous signaling pathways have been implicated in the disease, some of 

which exceed the scope of this project, however there are key regulators still 

under investigation (161). Hypoxia has been reported to affect superoxide (O2
-) 

and H2O2, however there is controversy in the literature in regards to the changes 

that occur to reactive oxygen species (ROS) following hypoxic exposure in phase 

1 of HPV (147). Some groups have observed that hypoxia causes an increase of 



www.manaraa.com

11 
 

ROS in PASMC (87, 99, 132, 172, 173, 181). However, other groups have 

observed that hypoxia causes a decrease in ROS in PASMC (102, 105, 181). 

Hence two major views concerning ROS in regards to hypoxia have emerged in 

the larger context of the phenomenon of HPV: the ROS (175) and redox 

hypotheses (3, 5, 179).  

 

Oxidative Stress. 

Following hypoxia, changes in ROS are known to occur. ROS can include 

O2
-, hydroxyl radicals, and oxidizing agents formed from H2O2 among others. 

This leads to the first major HPV hypothesis, the ROS hypothesis which asserts 

an increase in ROS following hypoxia, with NADPH-oxidase as the oxygen 

sensor (177). This increase in ROS allows for the release of Ca2+ from the SR, 

triggering SOCE, and a subsequent initiation of contraction events (177). Recent 

evidence for this hypothesis implicates mitochondrial complex III Rieske iron-

sulfur protein (175), which normally acts to transfer an electron from the Qo site 

to cytochrome c1 (62) and with hypoxia could lead to additional O2
- formation 

(175).  

Following CH, NADPH-oxidase expression is increased in pulmonary 

arteries from piglets and NADPH-oxidase contributes to ROS production (37, 49). 

In addition, xanthine oxidase expression and activity and uncoupled eNOS are 

increased in the lungs of rats exposed to CH (77), and these are known to 

produce O2
- (50, 51). As a result, oxidant stress and ROS are increased following 

CH (77). Studies performed in PASMC under acute hypoxia show an increase in 
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oxidative state as assessed by glutathione (173) and the fluorescent probe 

roGFP with catalase blocking the increase in oxidant-based fluorescence 

indicating that H2O2 is responsible for the oxidative stress (174). 

 

Redox. 

Redox state of the cell is determined by the ratio between reducing and 

oxidizing agents, primarily reduced and oxidized glutathione (GSH:GSSG) and to 

a smaller extent NAD(P)H:NAD(P)+. The overall redox state is important as it has 

implications in regards to thiol group modification as glutathione can donate or 

receive electrons which can interact with cysteines on other proteins such as ion 

channels (156). Studies have shown that cellular redox state changes with CH 

shifting the whole lung to a more reduced state by increasing GSH (134, 180). 

With acute hypoxia in pulmonary arteries, there is an increase in NADPH (60) as 

well as a decrease in H2O2 which as an oxidant would contribute to the redox 

state (105). In addition, a more reduced state has been shown with the 

fluorescent probe roGFP in PASMC from fawn hooded rats which develop 

spontaneous pulmonary hypertension (4, 142). 

These redox changes lead to the second major HPV hypothesis. The 

redox hypothesis asserts that a decrease in mitochondrial ROS leads to a more 

reduced redox state in the cell following hypoxia, with the mitochondria acting as 

the oxygen sensor (110). Specifically, activity of the electron transport chain is 

suppressed at complex I and III (93, 105) reducing the probability that electrons 

pair with molecular oxygen and generate mitochondrial ROS, which would lower 
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H2O2 levels. This allows for a buildup of NAD(P)H which in turn shifts the ratio of 

glutathione to GSH (177). The subsequent reduced redox state leads to an 

inhibition of K+ channels resulting in activation of L-type VGCC leading to 

contraction (110).  

 

Superoxide Dismutase and Hydrogen Peroxide. 

Superoxide dismutase (SOD) converts O2
- to H2O2 and is important for 

maintaining appropriate ROS levels in the cell. If this system is disrupted, high 

ROS results leading to oxidative stress implicated in numerous diseases. The 

three main isoforms of SOD are found in the cytosol (SOD1), mitochondria 

(SOD2), and extracellular matrix (SOD3). The enzymes operate via metal 

cofactors, with SOD1 and SOD3 utilizing copper/zinc and SOD2 utilizing 

manganese. Low expression and activity of SOD have been implicated in several 

models of pulmonary hypertension including fawn hooded rats (4), CH-induced 

pulmonary hypertension (37), persistent pulmonary hypertension of the newborn 

model with lambs (1), spontaneous pulmonary hypertension in SOD1 knockout 

mice (130), and human pulmonary hypertension (4). 

H2O2 can cause vasoconstriction or relaxation across various vascular 

beds (53, 54, 74, 76, 82, 122). In the pulmonary vasculature, there is evidence 

that H2O2 causes relaxation at low concentrations by activation of PKG through 

soluble guanylate cyclase and cGMP-dependent (20, 113) and -independent 

mechanisms (113). Following hypoxia, less H2O2 production, via mitochondrial 

dysfunction (105), decreases cGMP (19, 61, 109) and results in vasoconstriction 
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(105).   With increasing concentrations, H2O2 causes constriction via activation of 

ERK MAP kinase (122), PLC (148), and cyclooxygenase-derived prostaglandins 

(183). Other groups report that hypoxia allows for increased intracellular Ca2+ in 

pulmonary arteries due to increased H2O2 from the mitochondria (172, 176), 

possibly by mitochondrial H2O2 oxidizing mitochondrial nucleotides and 

stimulating Ca2+ release from the mitochondria (138).  

H2O2 has also been shown to activate STIM1-dependent calcium-release-

activated Ca2+ current (ICRAC)(59), the current attributed to store-operated 

responses (69). One postulated mechanism for this is through H2O2 induced S-

glutathionylation of STIM1, causing STIM1 clustering and initiating SOCE (13, 

66). In addition, H2O2 could trigger ICRAC via IP3 receptor activation (59, 133).  

Contrastingly, H2O2 can attenuate SOCE in thyroid cells (163), mast cells (160), 

and PASMC (128). 

 

Rationale and Specific Aims 

Our laboratory has demonstrated that ASIC1 contributes to enhanced 

SOCE following CH in the pulmonary vasculature (79, 118), but mechanisms 

regulating this response remain unclear. H2O2 is a critical regulator of ASIC1, 

decreasing plasma membrane expression and current amplitude (184, 185). We 

have shown increased O2
-  following CH (81), however whether this leads to a 

parallel increase in H2O2 is unknown especially with many forms of pulmonary 

hypertension having decreased SOD expression and activity (1, 4, 37, 130). 
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Therefore we tested the hypothesis that H2O2 levels are decreased in pulmonary 

arteries following CH due to diminished production and improved degradation. 

 

Specific Aim 1. 

Determine the effect of CH on pulmonary arterial H2O2 levels. 

 

Hypothesis and Approach. 

We hypothesize that H2O2 levels are decreased following CH. This 

hypothesis was studied by assessing H2O2 levels using the reagent Amplex Red 

in pulmonary arteries from control rats and rats exposed to CH. 

 

Specific Aim 2. 

Determine the effect of CH on H2O2 production in pulmonary arteries. 

 

Hypothesis and Approach. 

We hypothesize that SOD expression and activity are decreased following 

CH. To examine the importance of SOD function in H2O2 production, protein 

levels were examined for SOD1, SOD2, and SOD3. In addition, we assessed 

enzyme activity for total SOD, MnSOD (SOD2) and Cu/ZnSOD (SOD1 and 

SOD3).  

 

Specific Aim 3. 

Determine the effect of CH on H2O2 degradation in pulmonary arteries. 
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Hypothesis and Approach. 

We hypothesize that catalase and glutathione peroxidase expression and 

activity are increased following CH. To determine if CH increased H2O2 

degradation, the two major enzymes for H2O2 degradation were inhibited and 

H2O2 levels were measured by Amplex Red. In addition, H2O2 itself was added to 

assess the pulmonary arteries’ capability to break down the oxidant. Last, to 

assess the effect of CH on the two enzymes involved in H2O2 catalysis, protein 

levels and enzyme activity were assessed for catalase and glutathione 

peroxidase. 
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Chapter 2 – Methods 

Animals and Chronic Hypoxic Exposure Protocol  
 

Male Wistar rats (∼12 wk old, Harlan Industries) were divided into two 

groups (control and CH) for each experiment. Animals designated for exposure 

to CH were housed in a hypobaric chamber with barometric pressure maintained 

at ∼380 mmHg for 4 wk. The chamber was opened three times per week to 

provide animals with fresh food, water, and clean bedding. Age-matched control 

rats were housed at ambient barometric pressure (∼630 mmHg in Albuquerque, 

NM). All animals were maintained on a 12:12-h light-dark cycle. All protocols 

employed in this study were reviewed and approved by the Institutional Animal 

Care and Use Committee of the University of New Mexico School of Medicine 

(Albuquerque, NM).  

 

Measurement of Right Ventricular Hypertrophy and Polycythemia 

Rats were anesthetized with pentobarbital sodium (200 mg/kg ip), and the 

heart was exposed by midline thoracotomy. After isolation of the heart, the atria 

and major vessels were removed. Fulton’s index assessing right heart 

hypertrophy was expressed as the ratio of right ventricle (RV) to left ventricle plus 

septum (LV+S) weight. Polycythemia was assessed by measuring hematocrit 

from blood collected in microcapillary tubes following direct cardiac puncture. 
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Pulmonary Artery Isolation 

Rats were anesthetized with pentobarbital sodium (200 mg/kg ip), and the 

heart and lungs were exposed by midline thoracotomy. Lungs were removed and 

immediately placed in physiological saline solution (PSS) [pH adjusted to 7.4 

containing (in mM) 130 NaCl, 4 KCl, 1.2 MgSO4, 4 NaHCO3, 1.8 CaCl2, 10 

HEPES, 1.18 KH2PO4, 6 glucose]. Intrapulmonary arteries were dissected from 

surrounding lung parenchyma and snap-frozen in liquid N2 to utilize for further 

experiments.  

 
 
Amplex Red Assay / Hydrogen Peroxide Degradation Assay 
 

Hydrogen peroxide levels were determined by the Amplex Red Hydrogen 

Peroxide/Peroxidase Assay (Life Technologies). The assay was performed 

according to manufacturer’s directions with some modifications. The descending 

branch of the left pulmonary artery was isolated from control and CH-exposed 

rats. This branch was dissected into 2 mm segments over ice in cold HEPES-

PSS. Segments were incubated in vehicle (HEPES-PSS), PEG-catalase (250 

U/ml), PEG-SOD (50 U/ml), the SOD mimetic tiron (10 mM), the glutathione 

peroxidase (GPx) inhibitor mercaptosuccinic acid (3 mM) or a combination  of the 

catalase inhibitor 3-amino-1,2,4-triazole (5 mM) and mercaptosuccinic acid (3 

mM) for 30 minutes at 37°C. The supernatant was transferred to a 96-well plate 

and incubated with Amplex Red reagent for 30 minutes at 37°C. Amplex Red 

fluorescence was excited at 550 nm and detected at 610 nm using a 

fluorescence microplate reader (Tecan Infinite® M200).  
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Since Amplex Red fluorescence in the vehicle treated group was below 

standard curve values (Figure 4a,b), H2O2 production was stimulated in 

pulmonary artery segments with Di-(4-carboxybenzyl) hyponitrite (SOTS-1; 10 

µM) for 1 hr at 37°C prior to addition of Amplex Red (75, 88). To verify that 

SOTS-1 resulted in slow release of H2O2, we examined H2O2 levels via Amplex 

Red in response to increasing concentrations of SOTS-1 (0.01, 0.1, 1.0 mM) 

(Figure 4b). Protein concentration was determined for each segment following 

the assay to verify equal amounts of sample were used for each group.   

The antioxidant capacity and efficiency of the pulmonary arteries to 

degrade H2O2 was measured using the Amplex Red assay as described above. 

Pulmonary artery segments were incubated with H2O2 (1 µM) for 1 hr at 37°C 

and the supernatant was transferred to a 96 well plate and incubated with 

Amplex Red reagent for 30 minutes. H2O2 that was quenched by the tissue was 

determined by subtracting the fluorescence values of the samples from the 

values of 1 µM H2O2 alone (Figure 5).  
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Figure 4: SOTS-1 Increases H2O2. A) Standard curve for Amplex Red assay measuring H2O2 
levels from 0 to 3 µM. B) Summary data  for Amplex Red fluorescence in isolated pulmonary 
arteries from control rats for increasing concentrations of SOTS-1 (0.01, 0.1, 1.0 mM) and 
SOTS-1 (0.01 mM) plus PEG-catalase (250 U/ml). Overflow indicates saturation in the 
reading from the microplate reader. Values are means ± SE by one way ANOVA; n = 3-
4/group. 
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Figure 5: Method for H2O2 degradation. 2mm pulmonary artery segments from control rats and 
rats exposed to chronic hypoxia were incubated with 1 µM H2O2 for 1 hr at RT. Supernatant was 
transferred to a 96-well pate and incubated with Amplex Red reagent according to 
manufacturer’s directions for 30 min at RT. Fluorescence was read in a microplate reader at 
610 nm. The amount of H2O2 catalyzed by the tissue was assessed by taking the raw fluoresce 
value, indicative of the amount of H2O2 left in the tissue, and subtracting this from the 1 µM 
H2O2 standard well without tissue.  

 

1 µM H2O2 

 

Read in fluorescence plate reader 

with Amplex Red Reagent 

 

H
2
O

2 
Well H

2
O

2
 + Tissue Well 



www.manaraa.com

22 
 

Western Blotting 
 

Pulmonary arteries were dissected in ice-cold HEPES-PSS and snap 

frozen in liquid N2. Samples were homogenized in 10 mM Tris-HCl containing 

255 mM sucrose, 2 mM EDTA, 12 μM leupeptin, 4 μM pepstatin A, 1 μM 

aprotinin (Sigma) and centrifuged at 10,000 g at 4°C to remove insoluble debris. 

Supernatant was collected and sample protein concentrations were determined 

by the Bradford method (Bio-Rad) or spectrophotometer (Nano Drop 2000; 

Thermo Scientific). Pulmonary artery lysates were separated by SDS-PAGE 

(Tris·HCl gels, Bio-Rad) and transferred to polyvinylidene difluoride membranes. 

Blots were blocked for 1 hr at RT with 5% milk and 0.05% Tween 20 (Bio-Rad) in 

Tris-buffered saline (TBS) containing 10 mM Tris·HCl and 50 mM NaCl (pH 7.5). 

Blots were incubated with rabbit anti-SOD1 (1:5,000 Abcam), rabbit anti-SOD2 

(1:5,000 Abcam), rabbit anti-SOD3 (1:500; Abcam), rabbit anti-catalase (1:2,000; 

Pierce Thermo Scientific), or rabbit anti-GPx-1 (1:5,000; Abcam). For 

immunochemical labeling, blots were incubated for 1 hr at RT with goat anti-

rabbit IgG-horseradish peroxidase (1:3,000; Bio-Rad). After chemiluminescence 

labeling (ECL, Pierce Thermo Scientific), bands were detected by exposing the 

blots to chemiluminescence-sensitive film (Bio-Express). Bands were normalized 

to Coomassie staining. β-actin and GAPDH as traditional loading controls were 

first tested but were significantly elevated in the CH group (p<0.05) whereas 

there was not a statistically significant difference between control and CH with 

Coomassie staining. Bands were quantified by densitometric analysis using 

ImageJ (NIH).  
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SOD Activity Assay 
 

SOD activity was determined by an SOD Assay kit (Cayman Chemical). 

The assay was performed according to manufacturer’s directions with some 

modifications. Pulmonary arteries from the right descending branch were 

dissected in ice-cold HEPES-PSS and snap frozen in liquid N2. Samples were 

homogenized in 5 μl buffer (20 mM HEPES pH 7.2 containing 1 mM EGTA, 210 

mM mannitol, and 70 mM sucrose) per milligram of tissue and centrifuged at 

1,500 g for 5 min at 4°C. Supernatant was collected, diluted 1:25 and transferred 

to a 96-well plate where all samples were incubated in the presence or absence 

of NaCN (1.8 mM) to inhibit Cu/ZnSOD for 20 minutes at RT. Absorbance was 

detected at 450 nm using an absorbance microplate reader (BioTek Instruments, 

Inc. ELx800). Sample protein concentrations were determined by 

spectrophotometer (Nano Drop 2000; Thermo Scientific). 

 
 
Catalase Activity Assay 
 

Catalase activity was determined by a Catalase Assay kit (Cayman 

Chemical). The assay was performed according to manufacturer’s directions. 

Pulmonary arteries were dissected in ice-cold HEPES-PSS and snap frozen in 

liquid N2. Samples were homogenized in 5 μl buffer (50 mM potassium 

phosphate pH 7.0 containing 1 mM EDTA) per milligram of tissue and centrifuged 

at 10,000 g for 15 min at 4°C. Supernatant was collected, diluted 1:5 and 

transferred to a 96-well plate. Absorbance was detected at 540 nm using an 

absorbance microplate reader (Molecular Devices; SpectraMax Plus384).  
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Glutathione Peroxidase Activity Assay  
 

Glutathione peroxidase activity was determined by a Glutathione 

Peroxidase Assay kit (Cayman Chemical). The assay was performed according 

to manufacturer’s directions with some modifications. Pulmonary arteries were 

dissected in ice-cold HEPES-PSS and snap frozen in liquid N2. Samples were 

homogenized in 5 μl buffer (50 mM potassium phosphate pH 7.0 containing 1 

mM EDTA) per milligram of tissue and centrifuged at 10,000 g for 15 min at 4°C. 

Supernatant was collected, diluted 1:1 and 1:5 and transferred to a 96-well plate. 

Absorbance was detected at 340 nm, once every minute for 6 minutes, using an 

absorbance microplate reader (Molecular Devices; SpectraMax Plus384).  

Calculations and Statistics 

All data are expressed as means ± SE. Values of n refer to number of 

animals in each group unless otherwise stated. A t-test, one-way ANOVA, or two-

way ANOVA was used to make comparisons when appropriate. If differences 

were detected by ANOVA, individual groups were compared with the Student-

Newman-Keuls test. A Mann-Whitney rank sum t-test was used to make 

comparison for data converted to percent.  A probability of P < 0.05 was 

accepted as significant for all comparisons. 
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Chapter 3 – Results 

Specific Aim 1 

Determine the effect of CH on pulmonary arterial H2O2 levels. 

 

 Hypothesis. 

We hypothesize that H2O2 levels are decreased following CH. 

 

Pulmonary Arterial H2O2 Levels Decreased Following CH. 
 

To assess the effect of CH on pulmonary arterial H2O2 levels, an Amplex 

Red assay was performed. Following incubation in 10 µM SOTS-1, H2O2 levels in 

pulmonary artery segments from rats exposed to CH were significantly lower 

than in those from control rats (Figure 6). With the addition of PEG-catalase (250 

U/ml), Amplex Red fluorescence was significantly attenuated in both groups 

indicating the fluorescence with SOTS-1 treatment was from H2O2 (Figure 6).  
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Figure 6: CH decreases pulmonary arterial H2O2 levels. Summary data for Amplex Red 

fluorescence in pulmonary arteries from control rats and rats exposed to CH. H2O2 was 

stimulated with the addition of 10 µM SOTS-1. Segments were additionally treated with 

PEG-catalase (250U/ml). Values are means ± SE by two-way ANOVA; n = 3/group; 

*p<0.05 vs. control. 
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Specific Aim 2 

Determine the effect of CH on H2O2 production in pulmonary arteries. 

 

 Hypothesis. 

We hypothesize that SOD expression and activity are decreased following 
CH. 
 

 
SOD Expression and Activity Are Decreased Following CH. 

 
To determine if production of H2O2 is impaired following CH, we examined 

the expression and activity of SOD1, SOD2, and SOD3. In pulmonary arteries 

from rats exposed to CH, protein expression of SOD1 and SOD3 was 

significantly decreased compared to control when normalized to Coomassie 

staining. However, there was no significant change in SOD2 protein expression 

following CH (Figure 7a,b). Consistent with this result, we found that total SOD 

and Cu/ZnSOD (SOD1 and SOD3) activity was significantly decreased in 

pulmonary arteries from rats exposed to CH compared to control, with no 

statistically significant change in MnSOD activity (SOD2)(Figure 8). 
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Figure 7: CH decreases pulmonary arterial SOD expression. A) Representative western blots 

for SOD1 (18kDa), SOD2 (25kDa), and SOD3 (26kDa) protein expression in isolated 

pulmonary arteries from control rats and rats exposed to CH. B) Summary data for analysis of 

SOD1, SOD2, SOD3 protein expression in isolated pulmonary arteries from control rats and 

rats exposed to CH normalized to Coomassie staining. Values are means ± SE by t-test; n = 6-

9/group; *p≤0.05 vs. control. 

 

 

Control CH 

SOD 1 

SOD 2 

SOD 3 

18 kDa 

25 kDa 

26 kDa 

A. 



www.manaraa.com

29 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: CH decreases pulmonary arterial SOD activity. Summary data for total, MnSOD 

(SOD2), and Cu/ZnSOD (SOD1 and SOD3) activity in isolated pulmonary arteries from 

control rats and rats exposed to CH. Values are means ± SE by t-test; n = 6/group; 

*p<0.05 vs. control. 
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Administering SOD Does Not Normalize Pulmonary Arterial H2O2 
Levels Following CH. 

 
Next we sought to determine if restoring SOD would normalize the 

decreased H2O2 levels observed following CH. The addition of PEG-SOD and the 

SOD mimetic tiron to pulmonary artery segments from control rats and rats 

exposed to CH did not normalize endogenous H2O2 levels as assessed by 

Amplex Red (Figure 9). 
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Figure 9: Administering SOD does not normalize pulmonary arterial H2O2 levels following 

CH. Summary data for H2O2 as affected by PEG-SOD (50 U/ml) or tiron (10 mM) in 

pulmonary artery segments from control rats and rats exposed to CH. Values are means ± 

SE by rank sum t-test; n = 6/group; *p<0.05 vs. control. 
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Specific Aim 3 

Determine the effect of CH on H2O2 degradation in pulmonary arteries. 

 

Hypothesis. 

We hypothesize that catalase and glutathione peroxidase expression and 

activity are increased following CH. 

 
 

H2O2 Degradation Increased Following CH. 
 

Since administering PEG-SOD and tiron did not restore H2O2 levels to 

control levels, we focused on H2O2 degradation. Inhibiting catalase with 3-amino-

1,2,4-triazole and glutathione peroxidase (GPx) with mercaptosuccinic acid 

normalized endogenous H2O2 levels in pulmonary artery segments between 

control rats and rats exposed to CH (Figure 10a). With the addition of H2O2 to 

pulmonary artery segments, tissue from rats exposed to CH degraded H2O2 more 

efficiently than control tissue (Figure 10b). 
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Figure 10: H2O2 catalysis increased in pulmonary arteries following CH. A) Summary data for 

endogenous H2O2 as affected by mercaptosuccinic acid (MSA)(3 mM) and 3-amino-1,2,4-

triazole (AT)(5 mM) in pulmonary artery segments from control rats and rats exposed to CH. 

B) Summary data for H2O2 degradation as measured by Amplex Red with H2O2 treatment 

(1µM) in pulmonary artery segments from control rats and rats exposed to CH. Values are 

means ± SE by rank sum t-test; n = 3-9/group; *p<0.05 vs. control. 
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Glutathione Peroxidase Expression and Activity Are Increased 
Following CH. 
 

Due to the increased catalysis of H2O2 observed (Figure 10b), we 

assessed expression and activity for the two main enzymes responsible for H2O2 

degradation: catalase and glutathione peroxidase. There was a significantly 

higher amount of GPx-1 in pulmonary arteries from rats exposed to CH 

compared to control when normalized to Coomassie staining (Figure 11a). In 

addition, activity of GPx was higher in pulmonary arteries from rats exposed to 

CH (Figure 11b). There was not a statistically significant difference in catalase 

expression or activity between pulmonary arteries from control rats and rats 

exposed to CH (Figure 12a,b). 
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Figure 11: Glutathione peroxidase (GPx) expression and activity are increased following 
CH. A) Representative western blot and summary data  for  analysis of GPx-1 protein 
expression (22kDa) in isolated pulmonary arteries from control rats and rats exposed to 
CH normalized to Coomassie staining and B) GPx activity in pulmonary arteries from 
control rats and rats exposed to CH. Values are means ± SE by t-test n = 6/group; 
*p<0.05 vs. control. 
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Figure 12: Catalase expression and activity are unchanged following CH. A) Representative 
western blot and summary data for analysis of catalase protein expression (60kDa) in 
isolated pulmonary arteries from control rats and rats exposed to CH normalized to 
Coomassie staining and B) catalase activity in pulmonary arteries from control rats and rats 
exposed to CH. Values are means ± SE by t-test n = 6/group; *p<0.05 vs. control. 
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Chapter 4 - Discussion 

The overall objective of this project was to examine H2O2 levels following 

CH and mechanisms that contribute to H2O2 production and degradation that are 

potentially altered in rat pulmonary arteries. The major findings of this project are 

that CH: 1) decreases H2O2 levels; 2) decreases SOD expression and activity; 

and 3) increases H2O2 degradation via glutathione peroxidase in pulmonary 

arteries. We conclude that decreased H2O2 levels following CH may contribute to 

the augmented ASIC1-dependent SOCE observed in pulmonary arteries and 

PASMC (79, 118). 

 

H2O2 Levels and Potential Regulation 

Though controversy exists regarding whether pulmonary ROS are 

elevated following CH (99, 102, 105, 120, 132, 181), our laboratory has 

previously shown increased O2
- following CH (81). This should indicate a parallel 

increase in H2O2 levels due to dismutation by SOD. However, many forms of 

pulmonary hypertension indicate dysfunction in SOD (4, 37, 48, 86, 121, 130, 

182). Thus we sought to assess H2O2 levels in pulmonary arteries following CH. 

The finding of decreased H2O2 levels (Figure 6) is consistent with previous 

studies from our Vascular Physiology Group which found decreased levels in 

pulmonary arteries of mice after 5 days of CH (130) and also consistent with 

findings from a CH-induced pulmonary hypertension model in piglets (37).  

There is inconsistency in the literature regarding the role H2O2 serves in 

HPV and as a signaling molecule in general. Some groups report vasoconstrictor 

responses (84, 148, 183), while others report dilation with the differences 
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revolving around concentration (19, 20). In addition, various H2O2 constriction 

induced-mechanisms have been reported (83). Without constriction data, our 

finding of lower H2O2 levels is difficult to place in a larger context in regards to 

direct effects on vasoreactivity. Further discussion is addressed in the Future 

Directions section on this topic. As others have found dysregulation in SOD in 

regards to expression and activity (4, 37, 48, 86, 121, 130, 182), this prompted 

further investigation as to the regulation of H2O2 levels. 

 

Regulation of SOD 

 The significant reduction in SOD1 and SOD3 protein in pulmonary arteries 

following CH, and analogous Cu/ZnSOD activity reduction (Figure 7, 8) is 

consistent with data from a model of CH-induced pulmonary hypertension in 

piglet pulmonary arteries which found reduced expression of SOD1 and SOD3, 

reduced SOD1 activity, and no changes in SOD2 expression and activity (37, 

48). Similar findings were noted in a fetal lamb model of pulmonary hypertension 

showing a decrease in total SOD activity and no change in SOD2 expression in 

pulmonary arteries (15). A decrease in SOD2 expression, which would also 

mediate lower H2O2 levels, has been found in idiopathic forms of pulmonary 

hypertension including in PASMC from fawn hooded rats (4, 142) and humans 

with Group I pulmonary hypertension (4, 47).  

SOD1 and SOD2 transcriptional activation has been linked to HIF-2α in 

HEK cells (144), and a negative regulatory mechanism could be involved 

following HIF activation although we see no effect in SOD2. Endothelin as well as 
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NADPH-oxidase have been implicated in decreasing Cu/ZnSOD expression (27), 

though the mechanism of action is not known. 

The transcription factor activating protein-1 (AP-1) has been shown to 

regulate SOD protein expression. One study showed that the binding of AP-1 

mediated a decrease in Cu/ZnSOD expression by blocking another transcription 

factor, Sp1 (6). Interestingly, the induction of c-fos and c-jun, components of AP-

1, is increased by O2
- (145), which we have shown to be augmented following 

CH (81). Studies in cancer cells have shown an increase in AP-1 transcription 

after sustained hypoxia with a dependence on HIF-1α (106, 108). In a model of 

CH using pulmonary artery endothelial cells, AP-1 binding activity is increased 

and dependent on Ca2+ influx via SOCs (43, 100). A decrease in Cu/ZnSOD 

expression therefore could be due to AP-1 activation.  

A potential explanation for the reduction in SOD1 and SOD3 activity 

following CH is the availability of copper and zinc which act as cofactors for the 

enzymes. In rats fed a reduced copper diet, Cu/ZnSOD activity is reduced in 

erythrocytes and the aorta (143). Similarly, in rats and rhesus macaques fed a 

reduced zinc diet, plasma SOD3 activity is reduced (123). There does not appear 

to be any research done on copper and zinc levels in pulmonary arteries 

following CH currently. 

 Another explanation for decreased SOD1 and SOD3 activity is that the 

delivery of copper to SOD could be compromised. Copper is shuttled to SOD1 in 

particular by the copper chaperone for SOD1 (CCS)(26). CCS expression is not 

altered in pulmonary arteries in a fetal lamb model of pulmonary hypertension 
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(15). Interestingly, however, CCS requires oxygen (O2) for the posttranslational 

activation of SOD1, with no activation under anaerobic conditions but activation 

with exposure to room air (18, 52). The model of CH-induced pulmonary 

hypertension used in this thesis represents a partial pressure O2 of 70 mmHg, 

versus 122 mmHg in Albuquerque, NM (PIO2
 = FIO2

 · (PB – PH2O)), with even 

less O2 entering into the pulmonary tissue (14). With a hypoxic environment, less 

O2 could affect CCS and therefore reduce SOD1 activity. Copper metabolism 

Murr1 domain containing 1 (COMMD1) protein has also been shown to regulate 

SOD1 transcription and activity in an inhibitory fashion in situations of excess 

copper by binding to CCS and preventing final steps of SOD1 activation (166). 

CH has been shown to increase expression of copper transport proteins in a HIF-

1α dependent manner and increase copper uptake in pulmonary arteries (187). 

Interestingly, copper is required for HIF-1α activation (45), so hypoxia could have 

multiple effects on the system with an end result of decreased SOD1 activity. 

SOD3 copper is not regulated by CCS, but by Antioxidant-1 (Atox1) which 

delivers copper to the trans-Golgi network since SOD3 is extracellular (78). 

Following CH, however, there is no change in Atox1 levels in mouse pulmonary 

arteries (187).  

Lastly, regulation of SOD activity involves a feedback mechanism as 

SOD1 and SOD3 can initiate a peroxidase reaction which disrupts enzyme 

activity, without affecting SOD2 (55, 67, 68, 85). This occurs through oxidation at 

multiple histidine sites, many of which are normally involved in the binding of 

copper to the enzyme (90, 164). This has been demonstrated in a lamb model of 
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persistent pulmonary hypertension of the newborn, with H2O2 inhibiting SOD3 

activity in PASMC (178). This could explain the discrepancy between SOD1 and 

SOD3 expression (Figure 7) and activity levels (Figure 8). There was not a 

complete reduction in SOD1 and SOD3 expression and therefore subsequent 

H2O2 levels (Figure 6). Therefore, with some residual H2O2 produced, this could 

oxidize and inactivate SOD1 and SOD3 potentially explaining the complete 

attenuation of Cu/ZnSOD activity (Figure 8).  

 

Regulation of Glutathione Peroxidase and Catalase 

 The observed reduction in H2O2 levels (Figure 6) could additionally be due 

to an increase in degradation. To address this question, we utilized several 

chemical tools. PEG-SOD and the SOD mimetic, tiron, were applied to 

pulmonary arteries to overcome the SOD1 and SOD3 deficiencies, but still low 

H2O2 levels persisted in pulmonary arteries from rats exposed to CH (Figure 9). 

Shifting to the degradation portion of the pathway, we utilized the inhibitors 3-

amino-1,2,4-triazole and mercaptosuccinic acid to inhibit catalase and 

glutathione peroxidase,  respectfully, as they are the two main enzymes 

responsible for H2O2 catalysis. If degradation has a greater contribution to the low 

H2O2 levels observed, inhibiting degradation should normalize H2O2 levels 

between the control and CH groups. This is indeed what was observed (Figure 

10a) indicating that enhanced degradation of H2O2 is a larger contributing factor 

to the decreased H2O2 levels observed following CH in pulmonary arteries versus 

production by SOD. When H2O2 degradation was assessed, tissue from rats 
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exposed to CH had enhanced catalysis of H2O2 (Figure 10b). However, this 

analysis does not distinguish which enzymes, catalase or GPx, are contributing 

to the degradation of H2O2.  

When the protein expression and activity of these enzymes was assessed, 

we found a significant increase in only GPx in pulmonary arteries from rats 

exposed to CH (Figure 11) with no change in catalase (Figure 12). In this study, 

GPx-1 in particular was examined for expression, which is constitutively 

expressed and intracellular in location (94). GPx-1 undergoes extensive 

transcriptional, post-transcriptional, translational, and post-translational regulation 

some of which is not related to this project such as gender or age specific 

regulation (126, 127), or regulation specific to a decrease in expression or activity 

(94).    

Enzymes exist with transcriptional regulation that is sensitive to oxidative 

stress, including the antioxidant response element (ARE)(140) and oxygen 

response element (ORE)(34, 103), as well as transcriptional responses to ROS 

that are ARE-like (36). As with SOD, AP-1 transcription factors have been shown 

to bind the ARE in cells from rodents, most notably NF-E2-related factor 2 (Nrf2) 

with its effector protein Keap1 (30, 117). In an unstressed scenario, Keap1 

prevents Nrf2 from binding the ARE. In various oxidative stress situations ROS 

and also xenobiotics, thiol modifications to Keap1 release Nrf2 and allow for 

binding to the ARE (117). PKC also been shown to phosphorylate Nrf2 (117, 

119) and is increased in expression in rat pulmonary arteries following CH (150). 
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The ORE activates under conditions of changing oxygen tension and is regulated 

by the transcription factor Ku (34, 103). 

GPx-2 (7, 29, 131, 153) and GPx-3 (11, 131) consistently reveal ARE 

responses to oxidative stress, but GPx-1 reveals more of a xenobiotic response 

to ROS (36, 168). Paraquat, a O2
- generating drug (33), has been shown to 

induce GPx-1 transcription via the promoter as well as stimulate GPx activity in 

lungs of mice (36). Interestingly, the human GPx-1 does contain two OREs (34, 

103). In addition, glutamate-cysteine ligase (GCL), the first enzyme in the 

glutathione biosynthesis pathway (29, 117) and glucose-6-phosphate 

dehydrogenase (G6PD) have an ARE (29, 131). G6PD has been shown to play a 

role in HPV and expression is increased in PASMC following hypoxia (28, 60). 

ROS, via TNF-α, has also been shown to increase GSH via GCL in alveolar 

epithelial cells (129).  

One explanation for the increase in expression and activity of GPx 

includes, like with Paraquat (36), that the increased O2
- we observe following CH 

(81) is stimulating increased GPx expression and activity.  Another explanation 

includes links to a potential ARE with transcription regulation as well as a 

possible increase in one of the GPx substrates, GSH, via GCL which would 

increase GPx activity. Several groups have shown elevated GSH following CH 

(134, 180). In addition, SOD1 knockout mice reveal an increase in GCL mRNA 

and Nrf2 protein expression (64), which downstream could correspond to 

increased GSH. Taken together, this would allow for a shift in the redox state of 

the VSMC to a more reduced state due to higher GSH. 
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Both GPx and catalase activity can be regulated by the nonreceptor 

tyrosine kinases c-Abl and Arg. Although there was no change in catalase 

expression and activity, these data are consistent with a CH-induced pulmonary 

hypertension model in piglets (37). c-Abl activity in particular can be activated by 

ROS (159) and so it is possible that following CH there is a change in the 

phosphorylation status for these two enzymes (21, 22). Studies have shown that 

ROS levels correlate with catalase activity via c-Abl and Arg association. With an 

increase in ROS, catalase activity decreases due to c-Abl and Arg dissociating 

from catalase or targeting it for ubiquitination (23, 24). With a decrease in ROS, 

c-Abl and Arg associate with catalase activating it through phosphorylation (22, 

24). There was a tendency for catalase expression and activity to be decreased 

in pulmonary arteries following CH, but this was not statistically significant 

(Figure 12). So, it is possible that the increase in O2
- following CH (81) affects 

catalase, but perhaps this is being offset by the reduction in H2O2. 

GPx and catalase have very different Km values, with GPx operating 

efficiently under low H2O2 conditions (25) whereas catalase with its high Km is not 

as effective in low H2O2 (111, 136). Thus, since we observed higher GPx 

expression, higher GPx activity, and low H2O2 levels all with no changes in 

catalase and taking into account the Km values the data indicate that GPx is the 

main enzyme responsible for H2O2 degradation following CH.  
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Future Directions 

Although the present study provides insights regarding H2O2 levels and 

their regulation, further studies are needed to investigate how these levels affect 

ASIC1 activity and trafficking in VSM. Our laboratory has shown that the 

breakdown of H2O2 elicits a significant increase in ASIC1-dependent SOCE in 

control PASMC compared to vehicle, whereas there is no effect in PASMC from 

rats exposed to CH (128). This could indicate that, like observed in pulmonary 

arteries with Amplex Red (Figure 6), there is less H2O2 present in PASMC. With 

the addition of H2O2, ASIC1-dependent SOCE was significantly reduced in 

PASMC from both groups compared to vehicle (128). These data indicate that 

H2O2 attenuates ASIC1-dependent SOCE and that following CH there is a loss of 

H2O2 inhibition of SOCE. Interestingly, similar data have been found regarding 

H2O2 attenuation of SOCE in thyroid cells (163) and mast cells (160). 

 H2O2 attenuates plasma membrane localization of ASIC1 in transfected 

Chinese hamster ovary (CHO) cells (185). This could be through interacting with 

the trafficking protein PICK1 which has been shown to interact with ASICs (40, 

72). PICK1 is regulated by redox state, with H2O2 causing disulfide bond 

formation within PICK1 (151). One explanation for the increase in ASIC1-

dependent SOCE following CH (79, 118)  may be due to lower H2O2  levels 

allowing PICK1 to traffic more channels to the plasma membrane.  

 Redox could also affect ASIC1 through glutathione levels. Several groups 

have shown elevated pulmonary GSH following CH (134, 180). This may be 

possible because of de novo synthesis initiated by ROS (129). Glutathione 
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contains a reactive thiol group which can donate or receive electrons. This allows 

it to exist in its reduced and oxidized form, GSH and GSSG respectfully and also 

interact with other thiol groups on for example protein cysteines. Thereby, GSH is 

able to donate electrons and break an existing disulfide bond in a protein into two 

thiols (156). A higher level of reduced glutathione could act to break inhibitory 

disulfide bonds that form within ASIC1 subunits (185) and allow for more ASIC1-

dependent SOCE. Studies performed in neurons examining ASIC1 current found 

that GSH enhanced ASIC1 current, whereas the oxidizing agent DTNB reduced 

current (2, 31, 32) and this was linked to modulation at extracellular cysteine 61 

(32). In one particular study, the enhanced ASIC1 current remained despite wash 

out suggesting redox modulation by GSH at extracellular thiols (31). In addition to 

GSH, the reducing agent DTT has been shown to slow desensitization of the 

channel, allowing it to remain open longer (2, 31). Together, this suggests redox 

regulation of ASIC1 at thiols in the extracellular domain that contribute to channel 

kinetics.  

 ASIC1-dependent SOCE could also be affected by H2O2 itself. H2O2 is a 

strong oxidizing agent which can form hydroxyl radicals. These ROS can interact 

with protein thiols to form disulfide bonds (35). The majority of structural disulfide 

bonds (58) form within proteins designated for the plasma membrane inside the 

ER of cells (97). However, modifications to thiol groups can also occur in the 

cytosol (35). Interestingly, the ER maintains an oxidized state due to increased 

GSSG (73) and H2O2  (97, 98) allowing for the production of disulfide bonds 

within proteins undergoing processing (44). Part of the oxidized environment is 
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due to the disulfide bond formation process itself with endoplasmic reticulum 

oxidoreducin 1 protein and protein disulfide isomerase, in which H2O2 is a 

byproduct (146).  

ASIC1 has numerous cysteines in its extracellular domain in addition to 

four within the C-terminal (58, 185). The subunits that form ASIC1 naturally have 

disulfide bonds linking them together, however H2O2 has been shown to increase 

the number of these bonds (185). Another explanation for how H2O2 is affecting 

ASIC1 is by causing disulfide bond formation within the ER or cytosol, and that 

following CH there less H2O2 present and therefore not as many disulfide bonds. 

One group has examined the role of H2O2 to ASIC1 current as well as plasma 

membrane localization in ASIC1 transfected CHO cells. Their studies revealed a 

decrease in ASIC1 current and plasma membrane localization with the addition 

of H2O2, and both of these responses were C-terminal cysteine dependent (185). 

Other oxidizing agents can also inhibit ASIC1 current, as mentioned previously 

(2, 31, 32), and this inhibition has been linked to modulation of the extracellular 

domain (32). Taken together, this suggests that redox regulation of ASIC1 thiols 

via oxidants produced by H2O2 may contribute to channel trafficking. Although no 

studies have been performed examining H2O2 and channel kinetics, based on 

studies mentioned previously examining redox agents and the fact that H2O2 can 

be found in the cytosol and diffuse (10), it is also possible that redox modulation 

by H2O2 could affect ASIC1 activity. Therefore the shift in the levels of H2O2 

following CH may allow for a change in ASIC1 activity.  
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Summary 

 In summary (Figure 13), this work reveals decreased pulmonary arterial 

H2O2 levels following CH. This reduction is due in part to lower levels of SOD1 

and SOD3 as well as decreased SOD activity. In addition, higher GPx expression 

and activity contribute to the increased catalysis of H2O2 following CH. This work 

is consistent with previous data from our laboratory, that demonstrates a loss of 

H2O2 inhibition of ASIC1-dependent SOCE in PASMC (128)(Figure 13).  

The implications of this work relate to the importance of Ca2+ regulation 

and its pivotal role in vasoconstriction in the broad scheme of pulmonary 

hypertension. This is especially important as current treatments for Group III PH 

are not very effective, including traditional Ca2+ channel blockers (39, 137). This 

work implicating an imbalance in ROS as an activator of ASIC1-dependent 

SOCE (128) is important in the path towards understanding mechanisms and 

new treatments for PH. In addition, the role of H2O2 in regulating vasoreactivity 

remains unclear (83).  Future studies investigating the role of H2O2 and oxidizing 

and reducing agents in general to plasma membrane localization and channel 

kinetics are necessary to address key questions involving the regulation of 

ASIC1 especially in disease states such as pulmonary hypertension. 
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Figure 13: Summary diagram. A) Control pulmonary artery in which H2O2 inhibits 

ASIC1 SOCE and B) pulmonary artery from CH animal in which we have found 

elevated O2
-
 and reduced H2O2. This reduction in H2O2 is due to a decrease in 

production from diminished SOD1 and SOD3 expression and activity and an increase 

in catalysis through GPx, allowing for increased ASIC1-dependent SOCE. 
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